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Evolution of turbulent spots in a parallel shear flow
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The evolution of turbulent spots in a parallel shear flow is studied by means of full three-dimensional
numerical simulations. The flow is bounded by free surfaces and driven by a volume force. Three regions in the
spanwise spot cross section can be identified: a turbulent interior, an interface layer with prominent streamwise
streaks and vortices, and a laminar exterior region with a large scale flow induced by the presence of the spot.
The lift-up of streamwise streaks that is caused by non-normal amplification is clearly detected in the region
adjacent to the spot interface. The spot can be characterized by an exponentially decaying front that moves
with a speed different from that of the cross-stream outflow or the spanwise phase velocity of the streamwise
roll pattern. Growth of the spots seems to be intimately connected to the large scale outside flow, for a
turbulent ribbon extending across the box in the downstream direction does not show the large scale flow and
does not grow. Quantitatively, the large scale flow induces a linear instability in the neighborhood of the spot,
but the associated front velocity is too small to explain the spot spreading.
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I. INTRODUCTION spots in parallel shear flows, in particular their spanwise
spreading. Our flow has free-slip boundary conditions and is
The transition to turbulence in spatially extended systemsiriven by a volume force. Despite the change in boundary
does not necessarily take place at all points simultaneousigonditions we observe features similar to those in experi-
but can be preceded by the formation of localized structure§1ents on plane Couette flow with rigid boundary conditions
that grow to eventually fill space. The first experiments byand a linear shear profile: this supports the expectation that
Reynolds on pipe flow already showed the formation of tur-there are perhaps universal aspects. The model is, moreover,
bulent spots and slud4,2]. In Couette-Taylor flow between Well suited for high-resolution direct numerical simulations
counter-rotating cylinders turbulence can be confined tdvith & Fourier-pseudospectral method and allows for a de-
propagating spiralf3,4]. Localized turbulence has also been tailed investigation of the dynamics in the transitional region.
observed in plane Couette flofs] where the fraction of In particular, we focus on characterization of the front that
space filled with turbulent flow has been used as a measu&€eparates the laminar and turbulent regions, on the mecha-
to define the transition to turbulen¢é—8|. Besides these Nism by which it propagates, on the Reynolds number depen-
transitional phenomena, localized turbulent spots can also Bénce of the front speed, and on the large scale flow in the
observed in high-Reynolds-number boundary lay6is laminar surroundings of the spot. As we will discuss in more
It is tempting to connect both the localization of spots,detail in the appropriate sections these aspects complement
i.e., the coexistence of laminar and turbulent phases of thBrevious numerical and experimental investigations in wall
shear flow, and the propagation of sharp boundaries, i.e., @ounded shear flowsl 7-24.
frontlike structure, to phenomena studied in considerable de- The paper is arranged as follows. After introducing the
tail within amplitude models[10]. Indeed, some models physical model and the numerical procedures in Sec. Il we
show qualitatively similar behavior. There are, however, sevdiscuss in Sec. Il the hydrodynamics of the spreading
eral problems that raise questions about the applicability off€chanism in some detail. The properties of the tail of the
such models. For instance, they are not derived from th&nvelope, such as spatial decay and spreading velocity, are
Navier-Stokes equation and the extent to which they reflecéliscussed and three different regimes of the spreading pro-
the hydrodynamical processes and interactions remains ¢SS are identified. In Sec. IV we discuss the results and give
open question. Furthermore, amplitude equations work beg brief outlook.
if they can be applied in a situation of linear instability and
small amplitude$11], such as the onset of Rayleigh+Bed Il THE MODEL
convection near the critical poifit2]. But many of the tur-
bulent spots arise in shear flows that are linearly stable, at The system we consider here is a shear flow between
least in the Reynolds number region of interest here. Sucharallel free-slip surfaces and driven by a volume force. In
behavior can be captured in higher-order Ginzburg-Landathe streamwise and spanwise directions periodic boundary
models[13], but the required large amplitudes complicate aconditions are applied; in the normal direction the normal
guantitative comparison. Moreover, investigations of planevelocity component vanishes in the two bounding surfaces.
Couette flow show that the turbulent state is not stable butVith lengths measured in units df2 (half the gap width
can decay spontaneously for lower-Reynolds-number valuethe periodicities in streamwise and spanwise directions are
[14-16. both 80. The volume force with a sinusoidal dependence in
It is our aim here to analyze the evolution of turbulentthe normal direction gives rise to a laminar profile with ve-
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Uy scheme for advancing in time can be u$&6,27. To ac-
\d/2 count for boundary conditions the flow is represented by the
Fourier sums

ux<x,t>=;uxk<t>cos<kyy>exp[i<kxx+kzz>], (4)

uy(x,t)=; uy(t)sin(kyy)exdi(kx+k,z)], (5

uz<x,t>=§ uz(tcogky)exdi(kx+k,z)]  (6)

with wave numbers

d =0 T Ny 7
y 151771 yTa ( )
2 2 N, 27
Turbulent Spot k=040 05T L TXET )
Ly Ly 2 Ly
FIG. 1. Geometry of the flow. The axis points in the stream-
wise, y in the wall-normal, andz in the spanwise direction. The 2ar 2 N, 27
central plane ay=1 in which the spreading is analyzed is shaded k,= O,tL—,iZL—, - ,i7 - (9)
z z z

gray.

In [28] and[8], respectively, low-dimensional models for the

transition to turbulence in plane shear flows with stress-free

boundary conditions were discussed. Their basic flow has the

form Ug,(y)~sin(my/2) and is confined to an intervagle

au 1 [ —1,1]. Both expansions can thus be related by a shift in the

—+(u-V)u=—Vp+ —V2u-+f, (1) interval, but we prefer Eq€4)—(6) as it has the more com-

at Re pact representation in sines and cosines and is easier to
implement numerically. The spectral resolution for all runs

V-u=0, (2 with evolving spots wa\, X N, X N,=256x 33x512. The
initial localized perturbation is a poloidal vortex of the form

locities = U, at the surfaces. The Reynolds number is de
fined as ReeUyd/(2v). In these units the incompressible
Navier-Stokes equation for a velocity fieli{x,t) becomes

where p(x,t) denotes the pressure amk,t) the external
volume force specified below. _ V(X,t=0)=V X VXA ex] — a2(x—Xo)?
Figure 1 shows the Cartesian coordinate system we use,
W!th X pointing in th_e streamwisg, in the wall-n_ormal,_and —a§(y—yo)2—a§(2—zo)z]ey,
z in the spanwise direction. The fluid volume is confined to (10)
0=<y=2 with boundary conditions
positioned slightly off center in order to avoid spurious ef-
u _dUx &_0 at v=0 and 2 3 fects due to accidental symmetries. This initial condition is a
Yooy ay y= model for the flow induced in experiments where a small
transverse jet penetrates the laminar shear profile in the wall-
at the surfaces and periodic boundary conditions in thenormal direction5—7].
downstream and spanwise directions. For the analysis in the following sections we need the
The shear flow is driven by a volume forcé Reynolds number above which a transition to turbulence oc-
=2/(4 Re)costry/2)e, acting in thex direction, which in  curs. Because of the free-slip boundary conditions at the sur-
the laminar regime sustains a floWy=cos@ry/2)e,. The face it can be expected to be below the one for rigid walls.
velocity fieldu(x,t) is decomposed into this laminar floug But as in that case the transition is strongly intermittent and
and a turbulent pang(x,t). As shown already by Tollmien, the best approach to a definition of a critical Reynolds num-
Uy is linearly stable, thus demonstrating thatifgdt’'s theo-  ber uses a statistical analysis of run time experiments with
rem is a necessary but not sufficient condition for the transidifferent initial conditiong29]. At each value of Re we run
tion to turbulence25]. Nevertheless, for sufficiently large 30 trajectories starting from states with slightly different am-
driving the flow shows a transition to turbulence. plitudesA. The different initial conditions were obtained by
The free-slip or stress-free boundary conditions have theswitching on a field(10) with time-dependent amplitude
advantage that the flow can be represented completely bi(t)=a,sir’(wt/2) for te[0,2], where the factom, was
Fourier modes so that robust pseudospectral techniquescreased from 1.248 to 1.326 in steps of 0.0026. Since the
based on a 2/3-rule dealiasing and an adaptive Runge-Kuttm is to obtain information on the bulk properties, we took
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soF 7T T T g lower than the value of 32010 for rigid boundary condi-
0"’ tions[29]. Below this Reynolds number most turbulence is
L S (a) transient and a turbulent region can disappear by erosion
A from within. Thus, the kind of spot spreading phenomenon
20 % we are interested can occur only for Reynolds numbers
O above this value.

T
X
O
I

Ill. SPREADING OF THE TURBULENT SPOT

10T O 32x32x32 ] After a short transient of about 5 time units the inital
%< X 64x32x32 perturbation which was localized in diameter to about 4 half
X & A 128%x16x64 q gap width units develops streamwise streaks and vortices and
QA starts to expand. To highlight the turbulent deviations about
ol & the laminar flow a contour plot of the downstream velocity

100 125 150 175 200 averaged over half a box height,
Re

1

v(X,2,t)= fo vy (X,y,z,t)dy, (12)

is shown in Fig. 3(left pane). The elongated streamwise
streaks with alternating flow direction stand out above the
background flow. The cut at=L,/2=40 for the streamwise
turbulent velocity itself underlines the existence of the
streamwise streak@ight pane). In the streamwise direction
the spot advances more or less stochastically, with the un-
predictable appearance of turbulent bursts which are then
advected by the laminar profile. This causes a strongly frag-
mented spot interface. In the spanwise direction it advances
more steadily with a regular interface and it is this direction
we focus on in the following analysis.

Cross sections of the local turbulent enevdyaken in the
middle of the cell ak=L,/2 andy=1 for fixed time indicate
three different flow regimes: a turbulent interior, a laminar
exterior, and a narrow transitional region with large velocity

FIG. 2. Statistical analysis of the transition to turbulence. PaneBmplitudes and a rather regular spatial structeee Fig. 4.

(a) shows the numbeN, of initial conditions that lead to persistent We will discuss these regions in turn.

turbulence for different Reynolds numbers and for several spectral

resolutions. 30 trajectories were run for every Reynolds number. A, Turbulent interior and wave propagation at the spot
The dashed line is a two-parameter least squareN,(iRe)=15 interface

X tanH(Re—Ay)/A.]+ 15. Panelb) shows the temporal relaxation h lent fi . inthe i . . .
of the turbulent kinetic energy, averaged over all trajectories that The turbulent fluctuations in the interior were investigated

became turbulent. The double headed arrow marks the interval dff detail for five values of the Reynolds number, as shown in
temporal averaging used for E({.3).

Arithmetic mean of E,.(t)

TABLE I. Characteristic velocities of the spreading spot in units

a smaller box with aspect ratlg, : L, :L,=40:2:20(in units ~ Of Uo for several Reynolds numbers: the phase velooiy the
of half the gap width, and a lower spectral resolution. As in front veI0(:|tyv,:,. aqd the root mean square velocn.les of the three
the direct numerical simulations of plane Couette ff@g],  CoMPonentw; with i=x,y, andz The phase velocity was deter-
two types of dynamics can be identified: in one case the rov@nlnecj separately for the maxima and minimawgfclosest to the
builds up and the energy relaxes with oscillations to the tur_.oundary and their arithmetic mean is listed. The turbule_nt fluc_tL_Ja-
bulent state, i.eE,;,#0, whereas in the other case the Statetlons taken over a small volume in the spot cenFer were in gddltlon

’ s = . . averaged over time betweér 30 and 50. The third column is the
decays toward the laminar profile, so that finally;, be- root mean square velocityd2) + (v2) + (v2)) 2
comes negligible. The numbe¥; of initial conditions that X y v
became turbulent vs Reynolds number is shown in péel
of Fig. 2. For Rez 200 all samples relax to the turbulent state Re fw °F WD VD \/@ Ved
and the turbulent energy increases linearly with Reynold450 0.02 0.09 0.19 0.18 0.02 0.05
number, giving rise to the relatiofl3). As in the case of 200 0.08  0.42 0.41 0.38 0.09 0.12
plane Couette flow, the relaxation to the turbulent state i$50 0.14 056 0.50 0.45 0.13 0.19
oscillatory[Fig. 2(b)]. We conclude from these studies that 300 0.17 0.63 0.61 0.56 0.15 0.19
more than half the initial conditions will become turbulent 350 0.16 0.64 0.57 0.53 0.13 0.19
for Reynolds numbers of 1305, which, as expected, is

046307-3



JORG SCHUMACHER AND BRUNO ECKHARDT PHYSICAL REVIEW B3 046307

80 T T T T T T
Re=200

FIG. 3. Streamwise streaks in
an expanding spot for Re200 at
t=39. Left: Contours ob,(X,2z).
The rectangular box in the spot
center marks the lateral extension
of the volume used for the analy-
sis of internal turbulent fluctua-
tions. Right: Magnification of the
wall-normal—spanwise plane at
=L,/2 (marked by arrows in the
left pane). Corresponding con-
tours ofv,(x=L,/2)y,z) are plot-
ted using the same line style: gray
lines denote negative values,
black lines positive ones, and the
heavy solid line iwv,=0.

20~ N

Table. I. The fluctuations, in units &2, were obtained by For a Reynolds number of about 150, where the spot decays,
averaging over a bo¥ of sizel,:l,:1,=12:2:6 (see the the fluctuations decrease with time. For higher Reynolds
left panel of Fig. 3 in the center of the spot according to  numbers they first increase until a time of about 30 and then
stay constant, within statistical fluctuations. The values
<Ui2>(to): ij viz(x,y,z,to)dv for i=x,y,z. (12) quoted in the table are the temporal averages taken.between
Velv, t=30 and 50. As expected, the streamwise fluctuations are
largest but smaller than the fluctuations in the interface re-
. gion (see Fig. 4
Re=125 The spatial modulations near the interface are due to elon-
gated streamwise structures, so-called streamwise streaks,
“ which are not stable but travel slowly in the spanwise direc-
tion with a phase velocity,,. The occurrence of suctob-
lique) waves was noted in several previous investigations,
mainly for plane Poiseuille flow, and has been connected to
1.0 : an inflectional instability of the combined shear and cross
Re=175 flow velocity field[17,21. A linear stability analysis of the
combined profile for plane Poiseuille and plane Couette flow
gives a range of critical wave numbeisee[18,20 and be-
low).
The spreading of the spot in the spanwise direction is
further documented in Fig. 5 for R&00. The streamwise
— vorticity componentw, = dyv,—d,v, is shown in the upper
Re=400 panels. The growth of a pair of new counter-rotating vortices
(panel numbers 2, 3, and 4 of Fig. &n be followed for all
eight snapshots. The corresponding streamwise streak which
is lifted up by the non-normal amplification can also be iden-
tified in the cross section of the streamwise velocify(see
the lower panels Although there is a certain discreteness in
the growth of new streamwise rolls and pairs of streamwise
vortices, the front advances steadily in time without any dis-
ruptions, as will be shown later in Sec. Il C.
FIG. 4. Envelopes of the turbulent kinetic energy along the In Table | we have included the results for the phase
spanwise axis for three different Reynolds numbers=a59 after ~ velocity v,, of the streaks. The wavelength was also deter-
inducing the perturbation. mined as the distance between two streaks with the same

0.1

0.0

0 20 40
z
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FIG. 5. Snapshots of the
streamwise vorticity o, (upper
row) and the streamwise velocity
vy (lower row). The data are for
Re=200 atx=L,/2=40. Dotted
lines denote positive contours and
solid lines negative ones. Hori-
zontal axis denotes wall-normal
direction in all panels.

sign, i.e., the spatial distance between two maxima Ojrectional field, i.e.v/|v], where the overbar indicates an
minima of vy, measured in units of/2. We found values  5eraqe in the normal direction. The flow has quadrupolar
between 2.4 and 3.4 with a tendency toward smaller valuegy ;4 teristics, with outflow in the spanwise direction and
for higher Re. Velocities were determined by monitoring the; 45w in the streamwise direction.
motion of these maxima and minima in,. Only extrema The outward velocity does not coincide with the phase
closest to the interface were included and measuremeng%eed of the waves. But, small as the large scale flow may
were limited to times between=32 andt=60 for all five g it has profound consequences for the spreading of the
data sets. We find that the phase speed increases with Reysot consider, for instance, the case of a ribbon spanning
nolds number. the periodicity box in the streamwise direction but localized
in the spanwise direction: no such quadrupolar flow can
B. The large scale flow outside the spot form. And, indeed, the ribbon does not sprefage the

dashed line in pandh) of Fig. 9 below.
Near the spanwise centerline across the spot we find a pande) g W

strong outward pointing flow. It varies with height but is not
compensated by an inflow on any level. Incompressibility
thus demands a compensating inflow in other parts of the Outside the spot and into the laminar regime one notes a
spot. The magnitude of this large scale flow decreases rathgradual decrease in local turbulent enewgyx,t).

rapidly with distance from the spot and accounts almost Quantitatively, the energy density decays exponentially,

completely for the deviations from the laminar profile. In as demonstrated in Fig. 7, where segments of the turbulent
order to highlight the flow pattern we show in Fig. 6 the spot envelopes of the lower frofihoving towardz=0) be-

C. The propagating front
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40 ‘] 2 T T T T T T T T
1.1 1
N 20
< 1.0r q
0
<& lower front
X 0.9F ¥ upper front .
FIG. 6. Large scale flow outside the spot. To emphasize the
topology of the flow field only the directiow|v|, averaged in the 080 v
wall-normal directiornx, is shown. The domain is the lower half of 150 200 250 300 350 400
the full integration domain, with the center of the spot in the middle Re
of the upper boundary. The flow is for a Reynolds number of Re )
=200 at a time =39, FIG. 8. Exponential decay rate of the envelope. The data are

mean values taken from front envelopes as shown in Fig. 7.

tweent=34 andt=>50 are plotted. The rate of spatial decay
\ grows slowly for Reynolds numbers R00. By fitting to
each of 11 snapshots separately an exponential profil
~exp(—2z/\) gives decay rates between 0.9 and 1.2. In Fig.
8 the arithmetic mean and the corresponding error bars are v2=7.5x10 3x[a;+a,(Re—Re)], (13
shown for Re=175. For smaller Reynolds numbers devia-
tions from an exponential envelope are larger, resulting iRynhere the coefficienta, = 0.143, a,=2.6x10"%, and Rg
larger variations and uncertainties in the spatial decay rates. »qq follow from a linear fit to the mean kinetic energy
This exponentially decaying envelope is not much inﬂuenceqzk, (t)=(1/2V) [ (x,t)2dV as a function of Re. This varia-
by the turbulent fluctuations inside the spot and advanceﬁo'r;1 of mean kinetic energy was determined alongside the
more or less steadily into the laminar region. Monitoring thegiayistical analysis needed to determine the Reynolds number
position of a certain turbulent intensity threshold allows ones,; he transition to the turbulent statsee Sec. )l
to extract a velocity ¢ that is independent of the selected  he front speed thus determined is shown in pahebf
threshold along the tail. However, since the turbulent intenFig_ 9. It increases for Reynolds numbers between 135 and
200 and saturates for Reynolds numbers above 300. Both
regimes were also found in plane Couette flow experiments
with rigid walls. Dauchot and Daviau®2] observed an in-
creasing spreading rate for Re between 370 and 450.
Tillmark and Alfredsson found a constant spreading rate for
Re=500 [5]. In our simulations we can cover both ranges.
Note that for Re<135 the velocity is negative, i.e., the spot
shrinks rather than expands. This regime is difficult to detect
numerically since at these Reynolds numbers the turbulence
is not very stable and can decay spontaneously. This corre-
sponds to an erosion of the spot from the inside. However,
inspection of the flow field shows that in the time interval
followed here the velocity given is connected with a retreat-
ing front and not an eroding spdsee also the innermost
curves for the smallest Reynolds numbers in Fi@ 0 As
already mentioned in Sec. Il A the spreading is monotonic
in time as demonstrated by the curves in Fig)9
The Reynolds number at which the spots start to grow
was used by Lundbladh and Johans§b8| as a definition
30 : ' ' ' for the threshold to turbulent behavior. Here we find that the
o 10 o s 0 40 spot starts to grow for Re135, a value compatible with the
P one determined by the statistical analysis in Sec. Il, so that
FIG. 7. The exponential decay toward the laminar profile out-the results are consistent with9].
side the turbulent spot at R200. Shown are the profiles of the
turbulent kinetic energy along the lower half of the center line on a
semilogarithmic scale. Curves for different times[ig4,50 are
vertically displaced and overlayed. The lines across the plotindicate By now we have identified three velocities near the
the motion of the levels at which the front velocity was determined.boundary of the turbulent spot: the front velociy with

sity increases with Reynolds number it is advisable for nu-
merical reasons to adjust the threshold also. We choose to
fhcrease the level linearly with Re,

i ey,

50

Time

40

D. The propagation mechanism
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80 . . [ from this instability were smaller than the observed spread-

ing velocity [17,18. A complete stability analysis would
have to include the full profile of the cross flow. An estimate
of the expected spot growth rates may be based on a local
approximation, where the values of the cross flow are kept
fixed. We thus determine for each poinf along the span-
wise centerline the cross flow

U,(1.29) —U,(0.2)
2

U,(y,20) =U(0.20) + [1-cogmy)],

(14)

whereU,(0,z9) =U,(2,zy), and analyze the stability against
perturbations

vy(x,y,zt) =vy(y)exdi(kx+kz—wt)], (15

0.8
SR | wherew=w,+i€ is a complex frequency. This leads to the
' Orr-Sommerfeld equation
i 1 iw(D?—k?)v,+ (ikUg+ik,Uj)o, +Re {(D?~ k%)%,
> = =
02l i —(ikyUox+ik,U,)(D2=k?)v,=0, (16)
- I i with boundary conditions
. ” 1 vy(y)=0y(y)=0 at y=0 and 2. (17)
100 150 200 250 300 350 400 Here,k?=kZ2+kZ. The primes on the basic profilesandD
Re denote derivatives with respect to the wall-normal coordinate

y. The local approximation is now reflected in the fact that

Position of the extracted levef of the envelope along the span- the 'perturbatlons' can have zadependence, but the basic
wise center line X=40y=0.2) vs timet for both spanwise fronts. profile around which the perturbations are analyzed does not.

The outermost curves for the lower and upper fronts are taken a){v'th theAform of the cross flow profile and a Fourier expan-
Re=400, the inner ones at Re25. The dashed lines correspond to Sion forv(y) the Orr-Sommerfeld equation can be solved
a run at Re=200 with a turbulent ribbon that extended across thealgebraically. The maximal growth rates max(z) thus ob-

box in the downstream directioth) Corresponding front velocities  tained are shown in Fig. 10 for points along the spanwise
ve (absolute valugsextracted within the shaded time interval in half-axis and for two values of the Reynolds number. For the
panel(a). The inset highlights the crossover to the shrinking regimejgwer value no linear instability is detected. For Reynolds
around Re-135. numbers Re200 the local growth rate becomes positive,

which the exponentially decaying part of the envelope propalndicating a linear instability. _

gates, the velocity of the spanwise outflbly, and the phase ~_Investigations of other front-propagation problems, usu-
velocity v,, of the streamwise roll pattern. The value gy~ @lly within a Ginzburg-Landau model, show that it is not
depends on the distance from the spot, but, even when caPhly the local instability that determines the front speed but
culated at the position of the first maximum of the turbulentth@t the local curvature in wave number space has to be
fluctuations(see, e.g., Fig. ¥ the value is smaller than the included as We_II. In the absence_of a derivation of an a_mpl|-
front speedvr. Figure 5 shows that the outwards traveling tude equation ina turpulent me.dlum we phenomenolo.glcally
roll patterns are eventually overtaken by the turbulent inte{2ke the amplitude in the Ginzburg-Landau equation to
rior sincevg is larger thar,, . model the envelope of the turbulent intensif§(z,t), calcu-

In the absence of a linear instability of the laminar sheaf@ted in the middle of the cell at=L,/2 andy=1. The front
flow two possibilities for the growth mechanism have to bethen connects a laminar stat&<0) with a turbulent one
considered: a linear instability induced by the cross flow(A#0) [11,13. For all practical purposes the turbulent state
[9,17,18,22 and non-normal amplificatiofs0—33. is stable and the laminar one, composed of the basic profile

The combination of basic profile and cross flow defines &nd the cross flow, shows a linear instability. Thus the sim-
rather steady laminar flow with stability characteristics dif- Plest Ginzburg-Landau model with cubic nonlinearity should
ferent from those of the laminar profile. In the case of pland’® appropriate,

Poiseuille flow, Henningson could show that the combined ) 3
flow is linearly unstable, but the front velocities deduced A= eA+D3I;A—bsA”. (18

FIG. 9. Reynolds number dependence of the front velo¢iy.
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even above this Reynolds number, where there is a linear

0 : : : .
Re=150 1 0.06 instability, the calculated front speed differs significantly
from the observed one.
1 0.04 Besides the linear instability mode for spot growth there
is another possibilty, based on the non-normal amplification
g 0.02 of perturbations near the spot interface. Because of the action
§ -or ¢ of the perturbation on the basic profile, streamwise vortices
- 0.00 need not decay monotonically but can first grow on a time
scale of order Re to an amplitude about a factor Re larger
1-0.02 than the initial amplitude. This so-called lift-up effd&0] is
_______________________________________________ most likely responsible for the occurence of streamwise
-10 . : : : —0.04 streaks in turbulent shear flows where longitudinal modula-

0.06

0.04

tions can give rise to secondary instabilities and a perpetual
nonperiodic time evolutio16,33. Indeed, we do observe
this cyclic reproduction of the coherent structures in the in-
terface region of the spot as demonstrated in the sequence of
Fig. 5. The model then is that the turbulent interior of the
spot induces a small perturbation near the interface which

> 0.02 o
- & will then be amplified and grow turbulent. The statistical
= 0.00 analysis of section Il shows that not all perturbations grow
turbulent. Thus, if most of the perturbations grow turbulent,
---------- 1002 the spot will spread, but if most of the perturbations decay, it
will shrink. The observed coincidence between the critical
-10 : : ; : -0.04 Reynolds number for transition and the one for spot growth
20 24 28 32 36 40 can be explained naturally in this picture. However, we do

not see how to derive other quantitative conclusions from
this model. In particular, the front speed would be given as

FIG. 10. Maximum growth rates of plane waves perturbing the quotient of the width of the rolls generatétis can be
the mean flow combined with the cross-stream outflow along thgegd off rather accurately from the framemnd the time a
spanwise axis. The sets for two different Reynolds numbers arﬁerturbation needs to grow turbulent. The latter depends on

compared at=239. Thick solid lines denote lg@?) and thick dot-
ted lines denote maximum growth rate Additionally, for Re=300
the diffusion coefficienD, which follows from the dispersion rela-

tion, is plotted for the gray shaded rangezgfvalues.

The assumption is that the three parameteB3>0 andb,

the amplitude of the initial seed, the threshold for the transi-
tion to turbulence, and the amplification rate, none of which
seems accessible to independent determination.

IV. FINAL REMARKS

>0 are real. The marginal stability hypothesis then predicts
a value for the asymptotic front velocity of

v*=2./eD.

Our analysis of a shear flow with free-slip boundary con-
ditions on two parallel surfaces has revealed many similari-
ties to plane Couette flow between rigid walls. As in that
case three velocities connected with the spot can be identi-
fied, the velocities of the advancing front, of the outward

When taking the maximum growth rate of our data and flow component, and of the phase speedatflique waves.
evaluating the diffusion coefficie® by a saddle point ap- They differ in value and in Re dependence, and relations
proximation around the maximum of the dispersion relationbetween them are unknown. The dependence of the front
w=w(k,k;), we end up with a front velocity that is about velocity on the Reynolds number is consistent with experi-
an order of magnitude smaller than the observed one. Correnental findings[5,22. Many of the results reported here
sponding to EqQ.(19), one gets, e.g.p*=0.06 for € parallel the ones for plane Poiseuille flow. We also find
=0.017, D=0.056, and Re300(see Fig. 10 However, at waves and instabilities in the neighborhood of the spot, but
this Reynolds number the front moves with=0.63. they do not lead to quantitative predictions for the front ve-
This analysis of the front-propagation mechanism, with aocity.
local approximation, only cubic terms in the amplitude The conclusions we draw from this investigation highlight
model, and without a discussion of slow transidi®4] that  a dilemma. On the one hand, the large scale flow outside the
could arise in such models, is rather simplified and can givespot does not seem to be important: the spot grows indepen-
only an indication of the expected front velocity. Neverthe-dent of whether there is a linear instability of basic flow plus
less, it seems to us that even when these improvements aagge scale exterior flow or not, and if there is a linear insta-
included the model cannot account for the observed spdiility the derived front speed is slower than the observed
spreading rates. First of all, it cannot say anything about thene. Moreover, the behavior expected from the non-normal
dynamics below a Reynolds number of about 200, where thamplification mechanism can explain some aspects of the
spot spreads but where there is no instability. And, secondlydynamics, especially for lower Reynolds numbers. On the
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other hand, if the outflow is suppressed, as in the case of and a quantitative estimate of the growth velocity remain
turbulent ribbon that spans the cell in the streamwise direcmajor puzzles in the dynamics of turbulent spots in parallel
tion, no growth is observed despite the random initializationshear flows.

of seeds near the spot interface. Perhaps this can explain the

observed stopping of growth in some experimg¢28&. So it We thank Paul Ma__nneville for discgssions and the John-
seems that spot growth is a subtle interplay between localon-Neumann Institut fluComputing in Jiich for computing
features(e.g., non-normal amplificatiorand global features time on a Cray T-90, without which this study would not
(such as the external flowThe connection between the two have been possible.
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