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Evolution of turbulent spots in a parallel shear flow
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~Received 25 February 2000; revised manuscript received 26 October 2000; published 27 March 2001!

The evolution of turbulent spots in a parallel shear flow is studied by means of full three-dimensional
numerical simulations. The flow is bounded by free surfaces and driven by a volume force. Three regions in the
spanwise spot cross section can be identified: a turbulent interior, an interface layer with prominent streamwise
streaks and vortices, and a laminar exterior region with a large scale flow induced by the presence of the spot.
The lift-up of streamwise streaks that is caused by non-normal amplification is clearly detected in the region
adjacent to the spot interface. The spot can be characterized by an exponentially decaying front that moves
with a speed different from that of the cross-stream outflow or the spanwise phase velocity of the streamwise
roll pattern. Growth of the spots seems to be intimately connected to the large scale outside flow, for a
turbulent ribbon extending across the box in the downstream direction does not show the large scale flow and
does not grow. Quantitatively, the large scale flow induces a linear instability in the neighborhood of the spot,
but the associated front velocity is too small to explain the spot spreading.
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I. INTRODUCTION

The transition to turbulence in spatially extended syste
does not necessarily take place at all points simultaneo
but can be preceded by the formation of localized structu
that grow to eventually fill space. The first experiments
Reynolds on pipe flow already showed the formation of t
bulent spots and slugs@1,2#. In Couette-Taylor flow between
counter-rotating cylinders turbulence can be confined
propagating spirals@3,4#. Localized turbulence has also bee
observed in plane Couette flow@5# where the fraction of
space filled with turbulent flow has been used as a mea
to define the transition to turbulence@6–8#. Besides these
transitional phenomena, localized turbulent spots can als
observed in high-Reynolds-number boundary layers@9#.

It is tempting to connect both the localization of spo
i.e., the coexistence of laminar and turbulent phases of
shear flow, and the propagation of sharp boundaries, i.e
frontlike structure, to phenomena studied in considerable
tail within amplitude models@10#. Indeed, some model
show qualitatively similar behavior. There are, however, s
eral problems that raise questions about the applicability
such models. For instance, they are not derived from
Navier-Stokes equation and the extent to which they refl
the hydrodynamical processes and interactions remain
open question. Furthermore, amplitude equations work
if they can be applied in a situation of linear instability a
small amplitudes@11#, such as the onset of Rayleigh-Be´nard
convection near the critical point@12#. But many of the tur-
bulent spots arise in shear flows that are linearly stable
least in the Reynolds number region of interest here. S
behavior can be captured in higher-order Ginzburg-Lan
models@13#, but the required large amplitudes complicate
quantitative comparison. Moreover, investigations of pla
Couette flow show that the turbulent state is not stable
can decay spontaneously for lower-Reynolds-number va
@14–16#.

It is our aim here to analyze the evolution of turbule
1063-651X/2001/63~4!/046307~9!/$20.00 63 0463
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spots in parallel shear flows, in particular their spanw
spreading. Our flow has free-slip boundary conditions an
driven by a volume force. Despite the change in bound
conditions we observe features similar to those in exp
ments on plane Couette flow with rigid boundary conditio
and a linear shear profile: this supports the expectation
there are perhaps universal aspects. The model is, more
well suited for high-resolution direct numerical simulatio
with a Fourier-pseudospectral method and allows for a
tailed investigation of the dynamics in the transitional regio
In particular, we focus on characterization of the front th
separates the laminar and turbulent regions, on the me
nism by which it propagates, on the Reynolds number dep
dence of the front speed, and on the large scale flow in
laminar surroundings of the spot. As we will discuss in mo
detail in the appropriate sections these aspects complem
previous numerical and experimental investigations in w
bounded shear flows@17–24#.

The paper is arranged as follows. After introducing t
physical model and the numerical procedures in Sec. II
discuss in Sec. III the hydrodynamics of the spread
mechanism in some detail. The properties of the tail of
envelope, such as spatial decay and spreading velocity
discussed and three different regimes of the spreading
cess are identified. In Sec. IV we discuss the results and
a brief outlook.

II. THE MODEL

The system we consider here is a shear flow betw
parallel free-slip surfaces and driven by a volume force.
the streamwise and spanwise directions periodic bound
conditions are applied; in the normal direction the norm
velocity component vanishes in the two bounding surfac
With lengths measured in units ofd/2 ~half the gap width!
the periodicities in streamwise and spanwise directions
both 80. The volume force with a sinusoidal dependence
the normal direction gives rise to a laminar profile with v
©2001 The American Physical Society07-1
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locities 6U0 at the surfaces. The Reynolds number is d
fined as Re5U0d/(2n). In these units the incompressib
Navier-Stokes equation for a velocity fieldu(x,t) becomes

]u

]t
1~u•“ !u52“p1

1

Re
“

2u1f, ~1!

“•u50, ~2!

where p(x,t) denotes the pressure andf(x,t) the external
volume force specified below.

Figure 1 shows the Cartesian coordinate system we
with x pointing in the streamwise,y in the wall-normal, and
z in the spanwise direction. The fluid volume is confined
0<y<2 with boundary conditions

uy5
]ux

]y
5

]uz

]y
50 at y50 and 2 ~3!

at the surfaces and periodic boundary conditions in
downstream and spanwise directions.

The shear flow is driven by a volume forcef
5p2/(4 Re)cos(py/2)ex acting in thex direction, which in
the laminar regime sustains a flowU05cos(py/2)ex . The
velocity fieldu(x,t) is decomposed into this laminar flowU0
and a turbulent partv(x,t). As shown already by Tollmien
U0 is linearly stable, thus demonstrating that Fjo”rtoft’s theo-
rem is a necessary but not sufficient condition for the tran
tion to turbulence@25#. Nevertheless, for sufficiently larg
driving the flow shows a transition to turbulence.

The free-slip or stress-free boundary conditions have
advantage that the flow can be represented completely
Fourier modes so that robust pseudospectral techniq
based on a 2/3-rule dealiasing and an adaptive Runge-K

FIG. 1. Geometry of the flow. Thex axis points in the stream
wise, y in the wall-normal, andz in the spanwise direction. The
central plane aty51 in which the spreading is analyzed is shad
gray.
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scheme for advancing in time can be used@26,27#. To ac-
count for boundary conditions the flow is represented by
Fourier sums

ux~x,t !5(
k

uxk~ t !cos~kyy!exp@ i ~kxx1kzz!#, ~4!

uy~x,t !5(
k

uyk~ t !sin~kyy!exp@ i ~kxx1kzz!#, ~5!

uz~x,t !5(
k

uzk~ t !cos~kyy!exp@ i ~kxx1kzz!# ~6!

with wave numbers

ky50,
p

2
,p, . . . ,

Nyp

2
, ~7!

kx50,6
2p

Lx
,62

2p

Lx
, . . . ,6

Nx

2

2p

Lx
, ~8!

kz50,6
2p

Lz
,62

2p

Lz
, . . . ,6

Nz

2

2p

Lz
. ~9!

In @28# and@8#, respectively, low-dimensional models for th
transition to turbulence in plane shear flows with stress-f
boundary conditions were discussed. Their basic flow has
form U0x(y);sin(py/2) and is confined to an intervalyP
@21,1#. Both expansions can thus be related by a shift in
interval, but we prefer Eqs.~4!–~6! as it has the more com
pact representation in sines and cosines and is easie
implement numerically. The spectral resolution for all ru
with evolving spots wasNx3Ny3Nz52563333512. The
initial localized perturbation is a poloidal vortex of the for

v~x,t50!5“3“3A exp@2ax
2~x2x0!2

2ay
2~y2y0!22az

2~z2z0!2]ey ,
~10!

positioned slightly off center in order to avoid spurious e
fects due to accidental symmetries. This initial condition i
model for the flow induced in experiments where a sm
transverse jet penetrates the laminar shear profile in the w
normal direction@5–7#.

For the analysis in the following sections we need t
Reynolds number above which a transition to turbulence
curs. Because of the free-slip boundary conditions at the
face it can be expected to be below the one for rigid wa
But as in that case the transition is strongly intermittent a
the best approach to a definition of a critical Reynolds nu
ber uses a statistical analysis of run time experiments w
different initial conditions@29#. At each value of Re we run
30 trajectories starting from states with slightly different a
plitudesA. The different initial conditions were obtained b
switching on a field~10! with time-dependent amplitude
A(t)5a0 sin2(p t/2) for tP@0,2#, where the factora0 was
increased from 1.248 to 1.326 in steps of 0.0026. Since
aim is to obtain information on the bulk properties, we to
7-2
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EVOLUTION OF TURBULENT SPOTS IN A PARALLEL . . . PHYSICAL REVIEW E 63 046307
a smaller box with aspect ratioLx :Ly :Lz540:2:20~in units
of half the gap width!, and a lower spectral resolution. As
the direct numerical simulations of plane Couette flow@29#,
two types of dynamics can be identified: in one case the fl
builds up and the energy relaxes with oscillations to the
bulent state, i.e.,EkinÞ0, whereas in the other case the sta
decays toward the laminar profile, so that finallyEkin be-
comes negligible. The numberNt of initial conditions that
became turbulent vs Reynolds number is shown in pane~a!
of Fig. 2. For Re*200 all samples relax to the turbulent sta
and the turbulent energy increases linearly with Reyno
number, giving rise to the relation~13!. As in the case of
plane Couette flow, the relaxation to the turbulent state
oscillatory @Fig. 2~b!#. We conclude from these studies th
more than half the initial conditions will become turbule
for Reynolds numbers of 13065, which, as expected, i

FIG. 2. Statistical analysis of the transition to turbulence. Pa
~a! shows the numberNt of initial conditions that lead to persisten
turbulence for different Reynolds numbers and for several spe
resolutions. 30 trajectories were run for every Reynolds num
The dashed line is a two-parameter least squares fitNt(Re)515
3tanh@(Re2A0)/A1#115. Panel~b! shows the temporal relaxatio
of the turbulent kinetic energy, averaged over all trajectories
became turbulent. The double headed arrow marks the interv
temporal averaging used for Eq.~13!.
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lower than the value of 320610 for rigid boundary condi-
tions @29#. Below this Reynolds number most turbulence
transient and a turbulent region can disappear by ero
from within. Thus, the kind of spot spreading phenomen
we are interested can occur only for Reynolds numb
above this value.

III. SPREADING OF THE TURBULENT SPOT

After a short transient of about 5 time units the init
perturbation which was localized in diameter to about 4 h
gap width units develops streamwise streaks and vortices
starts to expand. To highlight the turbulent deviations ab
the laminar flow a contour plot of the downstream veloc
averaged over half a box height,

v̄x~x,z,t !5E
0

1

vx~x,y,z,t !dy, ~11!

is shown in Fig. 3~left panel!. The elongated streamwis
streaks with alternating flow direction stand out above
background flow. The cut atx5Lx/2540 for the streamwise
turbulent velocity itself underlines the existence of t
streamwise streaks~right panel!. In the streamwise direction
the spot advances more or less stochastically, with the
predictable appearance of turbulent bursts which are t
advected by the laminar profile. This causes a strongly fr
mented spot interface. In the spanwise direction it advan
more steadily with a regular interface and it is this directi
we focus on in the following analysis.

Cross sections of the local turbulent energyv2 taken in the
middle of the cell atx5Lx/2 andy51 for fixed time indicate
three different flow regimes: a turbulent interior, a lamin
exterior, and a narrow transitional region with large veloc
amplitudes and a rather regular spatial structure~see Fig. 4!.
We will discuss these regions in turn.

A. Turbulent interior and wave propagation at the spot
interface

The turbulent fluctuations in the interior were investigat
in detail for five values of the Reynolds number, as shown

l

al
r.

t
of

TABLE I. Characteristic velocities of the spreading spot in un
of U0 for several Reynolds numbers: the phase velocityvw , the
front velocity vF , and the root mean square velocities of the thr
componentsv i with i 5x,y, andz. The phase velocity was deter
mined separately for the maxima and minima ofvx closest to the
boundary and their arithmetic mean is listed. The turbulent fluct
tions taken over a small volume in the spot center were in addi
averaged over time betweent530 and 50. The third column is the
root mean square velocity (^vx

2&1^vy
2&1^vz

2&)1/2.

Re vw vF A^v2& A^vx
2& A^vy

2& A^vz
2&

150 0.02 0.09 0.19 0.18 0.02 0.05
200 0.08 0.42 0.41 0.38 0.09 0.12
250 0.14 0.56 0.50 0.45 0.13 0.19
300 0.17 0.63 0.61 0.56 0.15 0.19
350 0.16 0.64 0.57 0.53 0.13 0.19
7-3
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FIG. 3. Streamwise streaks in
an expanding spot for Re5200 at

t539. Left: Contours ofv̄x(x,z).
The rectangular box in the spo
center marks the lateral extensio
of the volume used for the analy
sis of internal turbulent fluctua-
tions. Right: Magnification of the
wall-normal–spanwise plane atx
5Lx/2 ~marked by arrows in the
left panel!. Corresponding con-
tours ofvx(x5Lx/2,y,z) are plot-
ted using the same line style: gra
lines denote negative values
black lines positive ones, and th
heavy solid line isvx50.
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Table. I. The fluctuations, in units ofU0
2, were obtained by

averaging over a boxVc of size l x : l y : l z512:2:6 ~see the
left panel of Fig. 3! in the center of the spot according to

^v i
2&~ t0!5

1

Vc
E

Vc

v i
2~x,y,z,t0!dV for i 5x,y,z. ~12!

FIG. 4. Envelopes of the turbulent kinetic energy along
spanwise axis for three different Reynolds numbers att559 after
inducing the perturbation.
04630
For a Reynolds number of about 150, where the spot dec
the fluctuations decrease with time. For higher Reyno
numbers they first increase until a time of about 30 and t
stay constant, within statistical fluctuations. The valu
quoted in the table are the temporal averages taken betw
t530 and 50. As expected, the streamwise fluctuations
largest but smaller than the fluctuations in the interface
gion ~see Fig. 4!.

The spatial modulations near the interface are due to e
gated streamwise structures, so-called streamwise stre
which are not stable but travel slowly in the spanwise dir
tion with a phase velocityvw . The occurrence of such~ob-
lique! waves was noted in several previous investigatio
mainly for plane Poiseuille flow, and has been connected
an inflectional instability of the combined shear and cro
flow velocity field @17,21#. A linear stability analysis of the
combined profile for plane Poiseuille and plane Couette fl
gives a range of critical wave numbers~see@18,20# and be-
low!.

The spreading of the spot in the spanwise direction
further documented in Fig. 5 for Re5200. The streamwise
vorticity componentvx5]yvz2]zvy is shown in the upper
panels. The growth of a pair of new counter-rotating vortic
~panel numbers 2, 3, and 4 of Fig. 5! can be followed for all
eight snapshots. The corresponding streamwise streak w
is lifted up by the non-normal amplification can also be ide
tified in the cross section of the streamwise velocityvx ~see
the lower panels!. Although there is a certain discreteness
the growth of new streamwise rolls and pairs of streamw
vortices, the front advances steadily in time without any d
ruptions, as will be shown later in Sec. III C.

In Table I we have included the results for the pha
velocity vw of the streaks. The wavelength was also det
mined as the distance between two streaks with the s
7-4
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EVOLUTION OF TURBULENT SPOTS IN A PARALLEL . . . PHYSICAL REVIEW E 63 046307
FIG. 5. Snapshots of the
streamwise vorticity vx ~upper
row! and the streamwise velocity
vx ~lower row!. The data are for
Re5200 at x5Lx/2540. Dotted
lines denote positive contours an
solid lines negative ones. Hori
zontal axis denotes wall-norma
direction in all panels.
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sign, i.e., the spatial distance between two maxima
minima of vx , measured in units ofd/2. We found values
between 2.4 and 3.4 with a tendency toward smaller va
for higher Re. Velocities were determined by monitoring t
motion of these maxima and minima invx . Only extrema
closest to the interface were included and measurem
were limited to times betweent532 andt560 for all five
data sets. We find that the phase speed increases with
nolds number.

B. The large scale flow outside the spot

Near the spanwise centerline across the spot we fin
strong outward pointing flow. It varies with height but is n
compensated by an inflow on any level. Incompressibi
thus demands a compensating inflow in other parts of
spot. The magnitude of this large scale flow decreases ra
rapidly with distance from the spot and accounts alm
completely for the deviations from the laminar profile.
order to highlight the flow pattern we show in Fig. 6 th
04630
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directional field, i.e.,v̄/uv̄u, where the overbar indicates a
average in the normal direction. The flow has quadrupo
characteristics, with outflow in the spanwise direction a
inflow in the streamwise direction.

The outward velocity does not coincide with the pha
speed of the waves. But, small as the large scale flow m
be, it has profound consequences for the spreading of
spot. Consider, for instance, the case of a ribbon spann
the periodicity box in the streamwise direction but localiz
in the spanwise direction: no such quadrupolar flow c
form. And, indeed, the ribbon does not spread@see the
dashed line in panel~a! of Fig. 9 below#.

C. The propagating front

Outside the spot and into the laminar regime one note
gradual decrease in local turbulent energyv2(x,t).

Quantitatively, the energy density decays exponentia
as demonstrated in Fig. 7, where segments of the turbu
spot envelopes of the lower front~moving towardz50) be-
7-5
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JÖRG SCHUMACHER AND BRUNO ECKHARDT PHYSICAL REVIEW E63 046307
tweent534 andt550 are plotted. The rate of spatial dec
l grows slowly for Reynolds numbers Re>200. By fitting to
each of 11 snapshots separately an exponential pr
;exp(2z/l) gives decay ratesl between 0.9 and 1.2. In Fig
8 the arithmetic mean and the corresponding error bars
shown for Re>175. For smaller Reynolds numbers dev
tions from an exponential envelope are larger, resulting
larger variations and uncertainties in the spatial decay ra
This exponentially decaying envelope is not much influen
by the turbulent fluctuations inside the spot and advan
more or less steadily into the laminar region. Monitoring t
position of a certain turbulent intensity threshold allows o
to extract a velocityvF that is independent of the selecte
threshold along the tail. However, since the turbulent int

FIG. 6. Large scale flow outside the spot. To emphasize

topology of the flow field only the directionv̄/uv̄u, averaged in the
wall-normal directionx, is shown. The domain is the lower half o
the full integration domain, with the center of the spot in the mid
of the upper boundary. The flow is for a Reynolds number of
5200 at a timet539.

FIG. 7. The exponential decay toward the laminar profile o
side the turbulent spot at Re5200. Shown are the profiles of th
turbulent kinetic energy along the lower half of the center line o
semilogarithmic scale. Curves for different times in@34,50# are
vertically displaced and overlayed. The lines across the plot indi
the motion of the levels at which the front velocity was determin
04630
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sity increases with Reynolds number it is advisable for n
merical reasons to adjust the threshold also. We choos
increase the level linearly with Re,

v257.5310233@a11a2~Re2Re0!#, ~13!

where the coefficientsa150.143, a252.631024, and Re0
5200 follow from a linear fit to the mean kinetic energ
Ekin(t)5(1/2V)*Vv(x,t)2dV as a function of Re. This varia
tion of mean kinetic energy was determined alongside
statistical analysis needed to determine the Reynolds num
for the transition to the turbulent state~see Sec. II!.

The front speed thus determined is shown in panel~b! of
Fig. 9. It increases for Reynolds numbers between 135
200 and saturates for Reynolds numbers above 300. B
regimes were also found in plane Couette flow experime
with rigid walls. Dauchot and Daviaud@22# observed an in-
creasing spreading rate for Re between 370 and 4
Tillmark and Alfredsson found a constant spreading rate
Re*500 @5#. In our simulations we can cover both range
Note that for Re<135 the velocity is negative, i.e., the sp
shrinks rather than expands. This regime is difficult to det
numerically since at these Reynolds numbers the turbule
is not very stable and can decay spontaneously. This co
sponds to an erosion of the spot from the inside. Howev
inspection of the flow field shows that in the time interv
followed here the velocity given is connected with a retre
ing front and not an eroding spot@see also the innermos
curves for the smallest Reynolds numbers in Fig. 9~a!#. As
already mentioned in Sec. III A the spreading is monoto
in time as demonstrated by the curves in Fig. 9~a!.

The Reynolds number at which the spots start to gr
was used by Lundbladh and Johansson@19# as a definition
for the threshold to turbulent behavior. Here we find that
spot starts to grow for Re.135, a value compatible with the
one determined by the statistical analysis in Sec. II, so
the results are consistent with@19#.

D. The propagation mechanism

By now we have identified three velocities near t
boundary of the turbulent spot: the front velocityvF with

e

e

-

a

te
.

FIG. 8. Exponential decay ratel of the envelope. The data ar
mean values taken from front envelopes as shown in Fig. 7.
7-6
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EVOLUTION OF TURBULENT SPOTS IN A PARALLEL . . . PHYSICAL REVIEW E 63 046307
which the exponentially decaying part of the envelope pro
gates, the velocity of the spanwise outflowUz , and the phase
velocity vw of the streamwise roll pattern. The value forUz
depends on the distance from the spot, but, even when
culated at the position of the first maximum of the turbule
fluctuations~see, e.g., Fig. 4!, the value is smaller than th
front speedvF . Figure 5 shows that the outwards travelin
roll patterns are eventually overtaken by the turbulent in
rior sincevF is larger thanvw .

In the absence of a linear instability of the laminar sh
flow two possibilities for the growth mechanism have to
considered: a linear instability induced by the cross fl
@9,17,18,22# and non-normal amplification@30–33#.

The combination of basic profile and cross flow define
rather steady laminar flow with stability characteristics d
ferent from those of the laminar profile. In the case of pla
Poiseuille flow, Henningson could show that the combin
flow is linearly unstable, but the front velocities deduc

FIG. 9. Reynolds number dependence of the front velocity.~a!
Position of the extracted levelv2 of the envelope along the span
wise center line (x540,y50,z) vs time t for both spanwise fronts
The outermost curves for the lower and upper fronts are take
Re5400, the inner ones at Re5125. The dashed lines correspond
a run at Re5200 with a turbulent ribbon that extended across
box in the downstream direction.~b! Corresponding front velocities
vF ~absolute values! extracted within the shaded time interval
panel~a!. The inset highlights the crossover to the shrinking regi
around Re.135.
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from this instability were smaller than the observed spre
ing velocity @17,18#. A complete stability analysis would
have to include the full profile of the cross flow. An estima
of the expected spot growth rates may be based on a l
approximation, where the values of the cross flow are k
fixed. We thus determine for each pointz0 along the span-
wise centerline the cross flow

Uz~y,z0!5Uz~0,z0!1
Uz~1,z0!2Uz~0,z0!

2
@12cos~py!#,

~14!

whereUz(0,z0).Uz(2,z0), and analyze the stability agains
perturbations

vy~x,y,z,t !5 v̂y~y!exp@ i ~kxx1kzz2vt !#, ~15!

wherev5v r1 i ẽ is a complex frequency. This leads to th
Orr-Sommerfeld equation

iv~D22k2!v̂y1~ ikxU0x9 1 ikzUz9!v̂y1Re21~D22k2!2v̂y

2~ ikxU0x1 ikzUz!~D22k2!v̂y50, ~16!

with boundary conditions

v̂y~y!5 v̂y9~y!50 at y50 and 2. ~17!

Here,k25kx
21kz

2 . The primes on the basic profilesU andD
denote derivatives with respect to the wall-normal coordin
y. The local approximation is now reflected in the fact th
the perturbations can have az dependence, but the bas
profile around which the perturbations are analyzed does
With the form of the cross flow profile and a Fourier expa
sion for v̂y(y) the Orr-Sommerfeld equation can be solv
algebraically. The maximal growth ratese5max(ẽ) thus ob-
tained are shown in Fig. 10 for points along the spanw
half-axis and for two values of the Reynolds number. For
lower value no linear instability is detected. For Reynol
numbers Re*200 the local growth rate becomes positiv
indicating a linear instability.

Investigations of other front-propagation problems, us
ally within a Ginzburg-Landau model, show that it is n
only the local instability that determines the front speed
that the local curvature in wave number space has to
included as well. In the absence of a derivation of an am
tude equation in a turbulent medium we phenomenologic
take the amplitude in the Ginzburg-Landau equation
model the envelope of the turbulent intensityv2(z,t), calcu-
lated in the middle of the cell atx5Lx/2 andy51. The front
then connects a laminar state (A.0) with a turbulent one
(AÞ0) @11,13#. For all practical purposes the turbulent sta
is stable and the laminar one, composed of the basic pro
and the cross flow, shows a linear instability. Thus the s
plest Ginzburg-Landau model with cubic nonlinearity shou
be appropriate,

] tA5eA1D]z
2A2b3A3. ~18!
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The assumption is that the three parameterse,D.0 andb3
.0 are real. The marginal stability hypothesis then pred
a value for the asymptotic front velocity of

v* 52AeD. ~19!

When taking the maximum growth ratee of our data and
evaluating the diffusion coefficientD by a saddle point ap
proximation around the maximum of the dispersion relat
v5v(kx ,kz), we end up with a front velocity that is abou
an order of magnitude smaller than the observed one. Co
sponding to Eq. ~19!, one gets, e.g.,v* .0.06 for e
.0.017, D.0.056, and Re5300 ~see Fig. 10!. However, at
this Reynolds number the front moves withvF.0.63.

This analysis of the front-propagation mechanism, with
local approximation, only cubic terms in the amplitud
model, and without a discussion of slow transients@34# that
could arise in such models, is rather simplified and can g
only an indication of the expected front velocity. Neverth
less, it seems to us that even when these improvement
included the model cannot account for the observed s
spreading rates. First of all, it cannot say anything about
dynamics below a Reynolds number of about 200, where
spot spreads but where there is no instability. And, secon

FIG. 10. Maximum growth ratese of plane waves perturbing
the mean flow combined with the cross-stream outflow along
spanwise axis. The sets for two different Reynolds numbers
compared att539. Thick solid lines denote loge(v

2) and thick dot-
ted lines denote maximum growth ratee. Additionally, for Re5300
the diffusion coefficientD, which follows from the dispersion rela
tion, is plotted for the gray shaded range ofz0 values.
04630
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even above this Reynolds number, where there is a lin
instability, the calculated front speed differs significan
from the observed one.

Besides the linear instability mode for spot growth the
is another possibilty, based on the non-normal amplificat
of perturbations near the spot interface. Because of the ac
of the perturbation on the basic profile, streamwise vorti
need not decay monotonically but can first grow on a ti
scale of order Re to an amplitude about a factor Re lar
than the initial amplitude. This so-called lift-up effect@30# is
most likely responsible for the occurence of streamw
streaks in turbulent shear flows where longitudinal modu
tions can give rise to secondary instabilities and a perpe
nonperiodic time evolution@16,33#. Indeed, we do observe
this cyclic reproduction of the coherent structures in the
terface region of the spot as demonstrated in the sequen
Fig. 5. The model then is that the turbulent interior of t
spot induces a small perturbation near the interface wh
will then be amplified and grow turbulent. The statistic
analysis of section II shows that not all perturbations gr
turbulent. Thus, if most of the perturbations grow turbule
the spot will spread, but if most of the perturbations decay
will shrink. The observed coincidence between the criti
Reynolds number for transition and the one for spot grow
can be explained naturally in this picture. However, we
not see how to derive other quantitative conclusions fr
this model. In particular, the front speed would be given
the quotient of the width of the rolls generated~this can be
read off rather accurately from the frames! and the time a
perturbation needs to grow turbulent. The latter depends
the amplitude of the initial seed, the threshold for the tran
tion to turbulence, and the amplification rate, none of wh
seems accessible to independent determination.

IV. FINAL REMARKS

Our analysis of a shear flow with free-slip boundary co
ditions on two parallel surfaces has revealed many simil
ties to plane Couette flow between rigid walls. As in th
case three velocities connected with the spot can be ide
fied, the velocities of the advancing front, of the outwa
flow component, and of the phase speed of~oblique! waves.
They differ in value and in Re dependence, and relatio
between them are unknown. The dependence of the f
velocity on the Reynolds number is consistent with expe
mental findings@5,22#. Many of the results reported her
parallel the ones for plane Poiseuille flow. We also fi
waves and instabilities in the neighborhood of the spot,
they do not lead to quantitative predictions for the front v
locity.

The conclusions we draw from this investigation highlig
a dilemma. On the one hand, the large scale flow outside
spot does not seem to be important: the spot grows inde
dent of whether there is a linear instability of basic flow pl
large scale exterior flow or not, and if there is a linear ins
bility the derived front speed is slower than the observ
one. Moreover, the behavior expected from the non-nor
amplification mechanism can explain some aspects of
dynamics, especially for lower Reynolds numbers. On
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other hand, if the outflow is suppressed, as in the case
turbulent ribbon that spans the cell in the streamwise dir
tion, no growth is observed despite the random initializat
of seeds near the spot interface. Perhaps this can explai
observed stopping of growth in some experiments@22#. So it
seems that spot growth is a subtle interplay between lo
features~e.g., non-normal amplification! and global features
~such as the external flow!. The connection between the tw
hy

ro

id

04630
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and a quantitative estimate of the growth velocity rem
major puzzles in the dynamics of turbulent spots in para
shear flows.

We thank Paul Manneville for discussions and the Jo
von-Neumann Institut fu¨r Computing in Ju¨lich for computing
time on a Cray T-90, without which this study would n
have been possible.
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